e
eIBe

® IBEXPERT WHITE PAPER

Firebird White Paper

Firebird 4 Replication

Fikret Hasovic, July 2021

What is database replication?

Database replication is the frequent copying of data from a database from one server to a database in
another, so that all users share the same level of information. The result is a distributed database in which
users can quickly access data relevant to their tasks.

A quick introduction

Firebird 4 introduces built-in support for uni-directional (“primary-replica”) logical replication. Logical here
means record-level replication, as opposed to physical (page-level) replication.

Events that are tracked for replication include inserted/updated/deleted records, sequence changes and DDL
statements.

Replication is transactional and the commit order is preserved. Any table that is to be replicated must have
a primary key or, at least, a unique key.

Both synchronous and asynchronous modes are available.

Synchronous Mode

In synchronous replication, the primary (master) database is permanently connected to the replica (slave)
database(s) and changes are replicated immediately. Effectively the databases are in sync after every commit,
which could have an impact on performance due to additional network traffic and round-trips.

You can have more than one synchronous replica, if necessary.

Asynchronous Mode

In asynchronous replication, changes are written into local journal files that are transferred over the wire and
applied to the replica database. The impact on performance is much lower, but imposes a delay — so called
replication lag — while changes wait to be applied to the replica database; i.e. the replica database is always
“catching up” the master database.

Access Modes
There can be two access modes for replica databases: read _only and read_write.

With a read_only replica, only queries that do not modify data are allowed. Modifications are limited to the
replication process only.

®e
oIBe
© ErEa

IBExpert.com

Page1/9



e
eIBe

® IBEXPERT WHITE PAPER

Aread_write replica allows execution of any query, so potential conflicts can exist and they must be resolved
by users or database administrators.

For a detailed explanation and full documentation, please consult the Release Notes.

Let’s do some exercises now...

Setting up the replication

The setup involves tasks on both the primary and replica sides.

Setting up the Primary Side

Replication is configured using a single configuration file, replication.conf, on the host serving the
primary database. Both global and per-database settings are possible within the same file. The available
options are listed inside replication. conf, along with commented descriptions of each.

Inside the database, replication should be enabled using the following DDL statement:

ALTER DATABASE ENABLE PUBLICATION

Defining a Custom Replication Set

Optionally, the replication set (aka publication) should be defined. It includes tables that should be replicated.
This is done using the following DDL statements:

-- to replicate all tables (including the ones created later)
ALTER DATABASE INCLUDE ALL TO PUBLICATION

-- to replicate specific tables
ALTER DATABASE INCLUDE TABLE T1, T2, T3 TO PUBLICATION

Tables may later be excluded from the replication set:

-- to disable replication of all tables (including the ones created later)
ALTER DATABASE EXCLUDE ALL FROM PUBLICATION

-- to disable replication of specific tables
ALTER DATABASE EXCLUDE TABLE T1, T2, T3 FROM PUBLICATION

Tables enabled for replication inside the database can be additionally filtered using two settings in
replication.conf: include filter and exclude filter.

®e
oIBe
© ErEa

IBExpert.com

Page2/9



e
eIBe

® IBEXPERT WHITE PAPER

Synchronous/Asynchronous Modes

Synchronous Mode

Synchronous replication can be turned on by setting the sync replica specifying a connection string to
the replica database, prefixed with username and password. Multiple entries are allowed so you can define
many replicas.

Asynchronous Mode

For asynchronous replication the journaling mechanism must be set up. The primary parameter is
journal directory which defines the location of the replication journal. Specifying this location turns
on asynchronous replication and tells the Firebird server to start producing the journal segments.

A Minimal Configuration

A minimal primary-side configuration would look like this:

database = c:\db\MASTER.FDB

{

journal directory = c:\db\journal directory\
journal archive directory = c:\db\journal archive directory)\

}

Archiving is performed by the Firebird server copying the segments from c:\db\journal directory\
toc:\db\journal archive directory\.

You can, however, create the setup with user-defined archiving. Custom archiving, through use of the setting
journal archive command allows use of any system shell command, including scripts or batch files,
to deliver segments to the replica side. It could use compression, FTP, or whatever else is available on the
server.

The same setup as above, with archiving performed every 10 seconds:

database = c:\db\MASTER.FDB

{

journal directory = c:\db\journal directory\
journal archive directory = c:\db\journal archive directory\
journal archive timeout = 10

You can check replication. conf (in the Firebird root directory) for many other possible settings.

®e
oIBe
© ErEa

IBExpert.com

Page3/9



e
eIBe

® IBEXPERT WHITE PAPER

Applying the Primary Side Settings

To take into effect changes applied to the primary-side settings, all users connected to a database must be
disconnected (or a database must be shutdown). After that, when all users connect again, it will use the
updated configuration.

Setting up the Replica Side

The replication.conf file is also used for setting up the replica side. Setting the parameter
journal source_ directory specifies the location that the Firebird server scans for the transmitted
segments. In addition, the DBA may specify explicitly which source database is accepted for replication, by
setting the parameter source_guid.

A Sample Replica Setup

A configuration for a replica could looks like this:

database = c:\db\REPLICA.FDB

{

journal source directory = c:\db\journal archive directory\
source guid = {6F9619FF-8B86-D011-B42D-00CF4FC964FF}

}

Read through the replication. conf for other possible settings.

Applying the Replica Side Settings

To take into effect changes applied to replica-side settings, the Firebird server must be restarted.

Creating a Replica Database

Task 1 — Make the initial replica

Any physical copying method can be used to create an initial replica of the primary database, but the simplest
way is file-level copy while the Firebird server is shut down.

Task 2 — Activate the replica access mode

Activating the access mode - for the copied database - involves the command-line utility gfix with the new
-replica switch and either read_only or read_write as the argument:

e To set the database copy as a read-only replica
Start gfix from the Firebird 4 root directory in the command line:
gfix -replica read only <databasex>
If the replica is read-only then only the replicator connection can modify the database. This is mostly

intended for high-availability solutions, as the replica database is guaranteed to match the primary one
and can be used for fast recovery. Regular user connections may perform any operations allowed for read-

®e
oIBe
© ErEa

IBExpert.com

Page4/9



e
eIBe

® IBEXPERT WHITE PAPER

only transactions: select from tables, execute read-only procedures, write into global temporary tables,
etc. Database maintenance such as sweeping, shutdown, monitoring is also allowed.

A read-only replica can be useful for distributing read-only load, for example, analytics, away from the
master database. Read-only connections have the potential to conflict with replication if DDL statements
that are performed on the master database are of the kind that requires an exclusive lock on metadata.

e To set the database copy as a read-write replica
Again using gfix in the command line:

gfix -replica read write <databasex>

Read-write replicas allow both the replicator connection and regular user connections to modify the
database concurrently. With this mode, there is no guarantee that the replica database will be in sync
with the master one. Therefore, use of a read-write replica for high availability conditions is not
recommended unless user connections on the replica side are limited to modifying only tables that are
excluded from replication.

Task 3 — Converting the replica to a regular database

Athird gfix -replica argument is available for “switching off” replication to a read-write replica when
conditions call for replication flow to be discontinued for some reason. Typically, it would be used to promote
the replica to become the primary database after a failure; or to make physical backup copies from the
replica.

gfix -replica none <databases>

Real-world example and exercise

Let’s manually download the 64-bit version and run it as an application (you might already have Firebird 2.5
and/or Firebird 3 running as a service locally), but you can use your preferred method of installation.

We extract our Firebird-4.0.0.2496-1-x64.zip archive to some custom location, for example,
C:\Firebird\Firebird-4.0.0.2496-1-x64\. As mentioned above, let’s run it as an application
by executing firebird.exe -ainthe command line from the directory above. Make sure to change the
default Firebird 4 port to some custom value if you already have older (or the same) Firebird instances
running by adding the following to the firebird.conf:

RemoteServicePort = 3054
IpcName = FIREBIRD4

Also, since we are installing from a zip file, we need to manually initialize the Security Database:

1. Stop the Firebird server. Firebird 4 caches connections to the security database aggressively. The
presence of server connections may prevent isq/ from establishing an embedded connection.

2. In a suitable shell, start an isq/ interactive session using the command-line isgl . exe from the Firebird
root directory, opening the employee database via its alias:

isql -user sysdba employee

®e
oIBe
© ErEa

IBExpert.com

Page5/9



e
eIBe

® IBEXPERT WHITE PAPER

3. Create the SYSDBA user:
You can do this on the command line or in IBExpert: Tools / SQL Editor:

SQL> create user SYSDBA password 'masterkey';
SQL> commit;
SQL> quit;

4. To complete the initialization, start the Firebird server again. Now you will be able to perform a network
login to databases, including the security database, using the password you assigned to SYSDBA.

Common for all scenarios:

Before we start the replication process, we need to create physical copy of the master database, for example
by simple copy/paste whilst the server is not running, so copy MASTER . FDB and paste it with new name i.e.
REPLICA.FDB or any other name you choose.

Next step is to run
gfix -replica read only c:\db\REPLICA.FDB -user sysdba -pass masterkey
Connect to the master database and execute the following DDL:
ALTER DATABASE INCLUDE ALL TO PUBLICATION;
ALTER DATABASE ENABLE PUBLICATION;
Scenario 1:
Let’s try replication testing on this single Firebird 4 instance, and let’s use the Synchronous mode:

Now we need to modify replication. conf file (located in the root Firebird folder, together with the
firebird. conf file) by adding the following:

database = c:\db\MASTER.FDB

{
}

Since we have a single Firebird 4 instance, that is all that is needed.

sync_replica = SYSDBA:masterkey@localhost/3054:c:\db\REPLICA SYNC.FDB

Now execute the common procedure with the name REPLICA SYNC.FDB.

It’s time to run firebird now, as we explained above:

firebird.exe -a

Now your database should start replicating. You can try adding or deleting some data, and all operations
should be duplicated immediately in your replica database.

Scenario 2:

Let’s use the Asynchronous mode:

This time we need to modify replication.conf file by adding following:

®e
oIBe
© ErEa

IBExpert.com

Page6/9



e
eIBe

® IBEXPERT WHITE PAPER

database = c:\db\MASTER.FDB

{

journal directory = c:\db\journal directory\

journal archive directory = c:\db\journal archive directory\
journal archive timeout = 10

verbose logging = true

}

database = c:\db\REPLICA ASYNC.FDB

{

journal source directory = c:\db\journal archive directory\
verbose logging = true

}

Note that we have two database entries this time, and reason is that this single Firebird 4 instance is
responsible for dealing with journal files.

Now execute the Common procedure with the name REPLICA_ SYNC.FDB.

In this case you can notice that logging is enabled, so you can easily check the status of replication process in
replication.log located in your Firebird 4 install directory.

Scenario 3:

You can, if you wish, enable both sync and async replication modes by combining the replication config:

database = c:\db\MASTER.FDB

{

sync_replica = SYSDBA:masterkey@localhost/3054:c:\db\REPLICA SYNC.FDB
journal directory = c:\db\journal directory\

journal archive directory = c:\db\journal archive directory\

journal archive timeout = 10

verbose logging = true

}

database = c:\db\REPLICA ASYNC.FDB

{

journal source directory = c:\db\journal archive directory\
verbose logging = true

}

Don’t forget to execute the Common procedure with the name REPLICA SYNC.FDB.

Scenario 4:
Let’s introduce one more Firebird 4 instance, for this exercise on the localhost.
We will replicate the firebird install, set it up to listen on different port i.e.

RemoteServicePort = 3055
IpcName = FIREBIRD4 2

and you can define async replication setup as follows:

®e
oIBe
© ErEa

IBExpert.com

Page7/9



e
eIBe

® IBEXPERT WHITE PAPER

1. Onthe 3054 instance, modify the replication. conf file:

database = c:\db\MASTER.FDB

{

journal directory = c:\db\journal directory\

journal archive directory = c:\db\journal archive directory\
journal archive timeout = 10

verbose logging = true

}

2. Onthe 3055 instance, modify the replication. conf file:

database = c:\db\REPLICA_ASYNC.FDB

{

journal source directory = c:\db\journal archive directory\
verbose logging = true

As usual, don’t forget to execute the Common procedure with the name REPLICA ASYNC.FDB.

Now, after restarting both instances, you can have one instance initiating the replication process and creating
journal files, and the second instance processing journal files and applying them to the replica database.

Note that, if you are using two different servers, journal archive directory and
journal source directory (respectively perinstance) must point to some network drive accessible
by both instances, and be prepared to expect some delay in processing the journal files.

Scenario 5:

Sync replication on the secondary instance, and define the async replication setup as follows:

database = c:\db\MASTER.FDB

{
}

On the secondary instance there is nothing to configure.

sync_replica = SYSDBA:masterkey@localhost/3055:c:\db\REPLICA SYNC.FDB

As usual, don’t forget to execute the Common procedure with the name REPLICA ASYNC.FDB.

Scenario 6:
There is a possibility to enable multiple synchronous replicas, by listing them in replication.conf:

SYSDBA:pwdl@myserverl:c:\dbl\REPLICA SYNC.FDB
SYSDBA:pwd2@myserver2:c: \db2\REPLICA SYNC.FDB
SYSDBA:pwd3@myserver3:c: \db3\REPLICA SYNC.FDB

sync_replica
sync_replica
sync_replica

As usual, don’t forget to execute the Common procedure with the name REPLICA SYNC.FDB.

®e
oIBe
© ErEa

IBExpert.com

Page 8/9



e
eIBe

® IBEXPERT WHITE PAPER

Using the replica as the main database

If you want to promote the replica to become the primary database (for example following a failure), you
should use

gfix -replica none <database> -user sysdba -pass masterkey

As already mentioned above, the read-only replica can be used as a hot stand-by server and for distributing
read-only load away from the master database.

However, as mentioned above, read-write replicas allow both the replicator connection and regular user
connections to modify the database concurrently, so there is no guarantee that the replica database will be
in sync with the master one.

So, bi-directional replication is not supported natively, unfortunately.

®e
oIBe
© ErEa

IBExpert.com

Page9/9



